
Journal of Nuclear Materials 406 (2010) 166–174
Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier .com/locate / jnucmat
A not-so-short description of the PERFECT platform

S. Bugat *, A. Zeghadi, G. Adjanor
EDF Research and Development Division, Les Renardières Site, Route des Renardières, F77818 MORET-SUR-LOING Cedex, France

a r t i c l e i n f o
Article history:
0022-3115/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.jnucmat.2009.04.022

* Corresponding author.
E-mail addresses: stephane.bugat@edf.fr (S. Buga

(A. Zeghadi), gilles.adjanor@edf.fr (G. Adjanor).
a b s t r a c t

This article describes the building of the so-called ‘PERFECT platform’, which main issue was to allow
the development of the PERFECT end-products dedicated to the prediction of the degradation of mate-
rial properties due to irradiation. First, the general principles used to build the platform are detailed.
Such principles guided the choices of preferential development language, architecture, and operating
system. The architecture of the platform is then described. It allows an easy development of the end-
products, and a ‘black-box’ integration of the codes developed during the project. Each end-product
can be seen as a sequence of modules, each module representing a physical phenomenon in time
and space. The platform is very flexible, so that different methodologies can be tested and compared
inside an end-product. The second part is devoted to the description of a classical PERFECT study,
defined thanks to the graphical user interface developed in the project. Focus is made in particular
on how a selection of modules is done, how the input data can be entered, and how the study exe-
cution is fully controlled by the user. A final description of the post-processing facilities on the results
is exposed.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The project PERFECT (Prediction of Irradiation Damage Effects
in Reactor Components) of the 6th Framework Program aimed at
developing and building predictive tools for Reactor Pressure Ves-
sels and Internal structures. In particular, the project focused on
the development of predictive tools for the fracture toughness
temperature dependence of RPV steels, and also on attempts of
development of predictive tools for irradiation hardening, plastic
flow channelling, void swelling and IASCC sensitivity of Internals.

Such a multiscale modelling of the micromechanical behaviour
of metals has already been attempted, as in Ghoniem et al. [5] for
instance. It has also been applied to irradiation damage on nuclear
materials for different reactor types, as for instance the British
Magnox power stations [3]. The purpose of this paper is to have
an integration process that will allow a possible successful future
industrial exploitation of these multi-scale models.

The main objective of this integration was to build two ‘Virtual
Reactors’ simulating the effect of irradiation respectively on Reac-
tor Pressure Vessel Fracture Toughness and on Internal structure
Irradiation Assisted Stress Corrosion Cracking. Specific modules
and database – dealing with damage production, microstructure
evolution, mechanical and corrosion phenomena induced by irra-
diation – complemented each of these Virtual Reactors. The result-
ll rights reserved.

t), asmahana.zeghadi@edf.fr
ing numerical tools were integrated in a Software Integration
Platform.

To reach its objectives, PERFECT was organised into four techni-
cal sub-projects as follows:

� SP I: Integration
The main activities of this sub-project were the numerical cou-
pling of the calculation modules, provided by the sub-projects II,
III and IV listed below. The results of this coupling were realized
on the Software Integration Platform developed by EDF with
support from CEA, which provided a common computer
architecture.

� SP II: Physics modelling of RPV and Internals, to predict the radi-
ation-induced microstructure upon physical basis.

� SP III: Mechanics modelling of the RPV, to predict the fracture
behaviour of Reactor Pressure Vessel components as a function
of material type and characteristics, loading and irradiation
conditions.

� SP IV: Mechanics and corrosion modelling of RPV Internals, to
formulate predictive models for initiation and propagation of
radiation-induced stress corrosion cracks in irradiated stainless
steels.

The relationship between the various sub-projects is shown in
Fig. 1.

This paper will focus on the main achievements of SP I, that is,
the software integration platform and the associated end-products.
Those end-products were evaluated by the User’s Group sub-pro-
ject which refers to the last sub-project of PERFECT. The accuracy

mailto:stephane.bugat@edf.fr
mailto:asmahana.zeghadi@edf.fr
mailto:gilles.adjanor@edf.fr
http://www.sciencedirect.com/science/journal/00223115
http://www.elsevier.com/locate/jnucmat

SP 1
Integration

SP2
RPV & Internals:
Physics Modeling

SP4
Internals: mechanics

and corrosion
modelling

SP3
RPV Mechanics

SP5
User’s Group

RPV-2

Toughness
Module

INTERN-1

IASCC
Module

Fig. 1. Organisation of the PERFECT project. The Integration sub-project includes all outputs from SP-II, SP-III and SP-IV to build the required end-products. Those end-
products are also used by the User’s Group members.

S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174 167
of the end-products with respect to industrial references cases will
not be presented in this paper.

2. Description of the platform

2.1. Some historical notes

The history of the platform is older than the PERFECT project.
During the REVE initiative Jumel et al. [7], Malerba et al. [10], Ju-
mel and Van-Duysen [8], a first prototype of so-called ‘Virtual Test
Reactor’ (VTR) was developed: RPV-1. This VTR was already based
on a chaining of several modules, to predict the increase of critical
resolved shear stress due to irradiation.

However, each module had to be improved especially from
the point of view of the parametrisation of the different codes
used. Moreover, the architecture of the VTR was not very flex-
ible, so that only one chaining was allowed, and the design and
implementation of new modules was very complex. Finally,
many different languages (shell scripts, C scripts, python
scripts) were used to define the chaining so that the mainte-
nance, portability and development of the platform remained
complicated.
2.2. A few words about the end-products

The description of the end-products is the following:

(1) RPV-2 is a product that aims to predict the irradiated
microstructure of RPV steels, as well as their microstruc-
tural hardening due to irradiation. The input data for
RPV-2 are typically the chemical composition of the steel,
the neutron spectrum, the irradiation temperature and
the irradiation time.
1 Primary Knocked-on Atom.
The specifications of RPV-2 were built with support from SP-
II ‘Physics Modelling’.
(2) ToughnessModule is a product that uses the outputs from RPV-2,
that is mainly the microstructural hardening, to predict both
the macroscopic behaviour of the irradiated steel, and the sub-
sequent decrease of fracture toughness. Some information on
the metallurgy of the steel are also requested for the good oper-
ating of this end-product (microstructural morphology, tex-
ture, bainitic lath size, carbide size distribution for instance).

Specifications of the ToughnessModule were built commonly
with SP-III ‘RPV Mechanics’.
(3) INTERN-1 is a similar product to RPV-2, except that it deals
with austenitic stainless steels of the Internals.

(4) IASCC Module was developed by the SP-IV as a standalone
product. For the moment, it is not yet fully integrated into
the software integration platform. It aims to predict both
the local chemistry at crack tip, and a crack extension pre-
diction based on the slip dissolution model.

Each end-product is based on a chaining of one or more ‘mod-
ules’, each module having a specific physical role. For instance, in
RPV-2, the first module IRRAD aims to transform the neutron spec-
trum into a PKA1 spectrum.

Each module, according to its complexity, can use one or more
codes. Each code is generally specific to the targeted physical phe-
nomenon: the IRRAD module uses for instance a simplified version
of the SPECTER [6] code. Those codes are developed generally in
different frameworks, and by different entities, not necessarily in-
volved in the project. Their sources usually cannot be modified:
their integration had to be considered as a ‘black-box’ integration,
not a full integration.

Moreover, to get the same physical output, different methodol-
ogies can be used. For example, the prediction of the long term
irradiated microstructure of RPV steels can be performed either
by using rate-kinetic type models, or by Object Kinetic Monte-Car-
lo methods. As one aim of PERFECT was also to compare both pre-

168 S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174
dictions, such models had to be implemented in the platform, so
that the user can chose one or the other.

Finally, the platform should allow any user to implement new
methodologies. To do so, the development of a new module should
be eased in order to encourage the implementation of any model,
with a minimum support from the SP-I. The new modules have
also to be easily documented, so that in particular this documenta-
tion can be maintained together with the module itself. This pre-
vents the developer from having to write the documentation
after the module was implemented.

2.3. General principles

The requirements described above defined some key guidelines
for the definition of the end-products, and the subsequent software
architecture:

� A consistent, flexible and upgradable format for the definition of
the input and output data:
� for the exchange of data between the different chained mod-

ules of a given end-product;
� for the use of different modules having the same role (named

branches);
� for an easier definition of new modules or branches.
� A consistent system of scripts for the chaining of the modules:
� a preferential language for adaptation of the inputs/outputs to

the different codes;
� a unified and simple format for definition of the modules,

avoiding any re-compiling of the platform.
In addition to those initial constraints about the end-products,
another constraint was imposed by the type of codes that would
be used on the platform. As the majority of these codes were devel-
oped on POSIX compliant architectures, like Unix or GNU/Linux sys-
tems, the PERFECT platform should be available at least for this
platform. Moreover, a strong need was identified for the ability to
launch studies either in batch mode, or with a graphical user inter-
face. As the latter is fully comprehensive especially from the point
of view of end-users, the former is related to the ability to launch
parametric studies for instance, in a more innovative way of use ded-
icated to research studies.

Those constraints lead to the following choices for the architec-
ture of the platform:

� A unique language for the definition of input/output data, the
structure of the end-products, the graphical user interface, and
the definition of the studies: python.2

This choice allows a very fast prototyping and a flexible develop-
ment due to the possibilities of this language, which is also based
on a huge library of modules [9]. python is also available on almost
all operating systems, enhancing therefore the possible portability
of the platform.

� A complete partition between the ‘software environment’ (data
model, graphical user interfaces, documentation, etc.) and the
‘dynamic part’ (the end-products themselves).
This kind of design is usually called as orthogonal: orthogonality
guarantees that modifying the technical effect produced by a com-
ponent of a system neither creates nor propagates side effects to
other components of the system.3

� A data model described by specific python classes
The use of OOP4 allows an easy definition and extension of input
and output data. Some basic types are first defined. They corre-
2 See http://en.wikipedia.org/wiki/Python_%28programming_language%29.
3 See http://en.wikipedia.org/wiki/Orthogonal#Computer_science for a detailed

description of this concept.
4 Object-Oriented Programming, see http://en.wikipedia.org/wiki/Object_oriented.
spond to files, directories, floats, integers, character strings,
numerical tables and so on. Then more structured classes are built
by recursive integration of those simple classes.

� A description of the end-products and their sub-modules as
simple python modulesThis choice allows to have the same
architecture between the end-products and the platform.
Therefore the development and extension of existing modules
is made easy.

� Some accessibility levels are defined for all data: 3 levels have
been defined, according to the current knowledge of the user
(normal, expert, or non-modifiable). Those levels allow
the experimented users to finely tune some default parameters
in the modules.

� The graphical user interface uses the qt3 graphical library, so as
to be consistent with the SALOME platform [12] in which the
PERFECT end-products can be included.
For what concerns the documentation of the end-products and
data, the choice has been made to use the LATEX formatting lan-
guage. This choice is consistent with the large dissemination and
use of this typesetting language in the scientific community. To
ease this documenting process, each module of an end-product
and each class of data embeds its own documentation as a string
attribute. The full documentation of each end-product or struc-
tured class is then built by recursive concatenation of the docu-
mentation attributes of their sub-modules or objects. To generate
the documentation in a WYSIWYG.5 format, some drivers are de-
fined to export them in PDF or HTML formats. The softwares
dvips, ps2pdf and latex2html, freely available on GNU/Linux,
are used.

More generally, the platform was built with respect to a certain
number of coding standards of the open-source community. This
ensures that the development and maintenance will be eased in
the future, and that the platform will use only open-source soft-
wares, with the exception of the scientific codes themselves of
course.

2.4. Structure of the platform

The structure of the platform is described on Fig. 2. Not all the
sub-directories are represented, but only those of interest from a
macroscopic point of view. Each folder represents a python pack-
age or module.

The acronyms used for the different folder names refer to their
function in the platform:

� PDM (python data model):
The data model contains the declarations of all the python clas-
ses needed to build the input and output objects of all modules.

� PSM (perfect study manager):
This python package contains the ‘patterns’ for the definition of
modules inside the end-products, and the definition of PERFECT
studies.

� PMM (perfect modules model):
Inside this package are located all the end-products, gathered
by type of material (Reactor Pressure Vessel Steel or Inter-
nals). Their structure is consistent with the structure of the
end-products.

� Perspycace (perfect graphical user interface):
This package is related to the implementation of the graphical
user interface (GUI) aiming to define, follow and process PER-
FECT studies. It uses the python-qt graphical library.
5 What You See is What You Get.

http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Orthogonal#Computer_science
http://en.wikipedia.org/wiki/Object_oriented

platform_PERFECT

PDM

PMM

Perspycace

RPV

ToughnessModule

RPV-2

INTERNALS INTERN-1

PSM

BasicTypes.py

doc

PMM

PDM

PDF

HTML

PDF

HTML

(...).py

doc_RPV2.pdf

(...).pdf

BasicModule.py

PerfectStudy.py

(...).py

Fig. 2. Schematic structure of the software integration platform.

S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174 169
� doc (documentation):
In this folder are located all the documentations for the input/
output data of the different modules, and for the end-products
and their sub-modules. These documentations are available in
PDF6 or HTML7 formats.

Each package is briefly described hereafter.

2.4.1. The PDM package
As mentioned above, this package details the basic types

needed to build more complex types of data for input/output of
the modules. It refers to a static description of the data needed.
Each type of data is a python class. Each python class has different
attributes, however some of them are common to almost all basic
classes:

� value: when the class refers to a numerical float, integer or
string, this attribute gives access to its current value;

� validity_range: when the class refers to a numerical value,
this attribute declares the range of validity of this value;

� unit: for classes related to numerical values, this argument
indicates in which unit the value is expressed. Some conversion
facilities between units are provided.

� access_level: this attribute indicates if a user with a given
profile (normal or expert) can modify the value of the class;
6 See http://en.wikipedia.org/wiki/Portable_Document_Format for details.
7 See <http://en.wikipedia.org/wiki/HTML>.
� long_doc: this attribute contains a LATEX string describing the
role of this class.

If we take the example of the Young’s modulus for the RPV
steel: it is a float, whose default value and unit are fixed at
200000 MPa, whose range of validity is set to [150000, +1[, whose
access level is expert (meaning that the default value is sufficient
for most studies), and whose documentation is "Young’s modu-

lus of the RPV steel".
Structured classes are built from those basic types as trees,

where each node is an attribute instance of a structured class,
and each leaf is a simple type. If we take as an example the consti-
tutive equations for the description of a single-crystal behaviour,
namely the Cailletaud-Méric law [11], it has been implemented
through the class SingleCrystalCailletaud chosen in the
ToughnessModule. Its structure is the following:

[SingleCrystalCailletaud]

|–+ NortonKinematicFlow [NortonKinematicFlow]

| |–+ C [Coefficient] =’: 0.0 MPa’

| |–+ K [Coefficient] =’: 10. MPa.s$ ^{1/n’}
| |–+ n [Coefficient] =’: 20.’

j
|–+ LHM [LHM]

| |–+ h2 [Coefficient] =’: 1.0’

| |–+ h3 [Coefficient] =’: 1.0’

| |–+ h1 [Coefficient] =’: 1.0’

| |–+ h4 [Coefficient] =’: 1.0’

j

http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/HTML

170 S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174
|–+ Elasticity [Elasticity]

| |–+ young [Stress] =’Sigma: 200 000 MPa’

| |–+ poisson [Coefficient] =’: 0.3’

| |–+ alpha [inversetemperature] =’T
-1
: 0.0 K

-1
’

j
|–+ IsotropicHardening [IsotropicHardening]

| |–+ Q [Stress] =’Sigma: 20.0 MPa’

| |–+ b [Coefficient] =’: 10.0’

| |–+ tau0 [Stress] =’tau0: 123. MPa’

j
|–+ KinematicHardening [KinematicHardening]

| |–+ D [Coefficient] =’: 0.0’

Such a structuring allows to set that a full behaviour law is con-
stituted by the setting of a viscoplastic flow (here the Norton kine-
matic model), a latent hardening matrix (defined here by four
coefficients h1 to h4), the elastic properties (here considered as iso-
tropic and defined by the Young’s modulus and the Poisson coeffi-
cient) and two hardenings (one non-linear isotropic and one non-
linear kinematic).
2.4.2. The PSM package
This package is the engine of the PERFECT studies. It holds two

important python modules: the first one, BasicModule.py, de-
scribes how an end-product module has to be constituted. As men-
tioned above, each module in an end-product corresponds to a
python module, described in the PMM directory (see Section
2.4.3). However, there is a common structure for all modules,
and this structure is described here. To be more precise, a module
should contain the following elements:

� a list of input and output data, referenced by their names and
their corresponding classes in PDM;

� a list of template files, describing the structure of the input files
needed for the module to operate (without any numerical value
at this point);

� a list of sub-modules, if there is some, or a declaration of module
to be run if not;

� a documentation, given as a LATEX string.

The classes described in the package family BasicModule

also contains methods to access to the different elements of a mod-
ule, for instance its parent, its corresponding end-product, its doc-
umentation and so on.

The second important python package delivered inside PSM is
the family PerfectStudy package. It defines the structure of a
study. The main attributes of a study are: the so-called chain of
modules, corresponding to the sequence of sub-module of the se-
lected end-product to be run, and a list of input data, corresponding
to the numerical data inputed by the user and needed by the chain
of modules. Those input data depends effectively on the selected
chain of modules. As some outputs of a given module can be inputs
for the following modules, a common system of identification
names is defined. The list of inputs is thus a dictionary from the
software point of view, where the keys define the unique names
of the data, and the values corresponds to the instance of the class.
This dictionary is enriched by the outputs of the different modules
when they are ran. The final dictionary contains all input and out-
put data, referenced by their names.
Fig. 3. Treeview of the ToughnessModule.
2.4.3. The PMM package
The PMM package contains the python modules referring to the

different modules of the end-products. Inside a given end-product,
the modules and their possible sub-modules can have two differ-
ent kind of relationships: either they are chained, or they are exclu-
sive. Two modules are chained when they can be run one after the
other, in that sense that the second module will use as input data
some of the output data of the first module. Two modules are
exclusive when they aim to provide the same output data, by using
two different physical methodologies, so that the user has to chose
one or the other and cannot chain them.

For instances, in the FractureBehaviour module of the Toughness-

Module end-product, there is a sub-module named LocalApproach

aiming to predict the failure probability of a 1T-CT specimen ver-
sus loading by applying a local approach post-processor like the
Beremin model [2]. For that, a first sub-module CTCalculation per-
forms the computation in 2D-plain strain of the CT specimen. Then,
a second sub-module PostProcessor uses the computed strain and
stress fields to perform a Beremin post-processor from this first
computation results. Those two modules are thus chained.

On the other side, in the HARD module of RPV-2, two different
methodologies can be used to estimate the microstructural hard-
ening due to irradiation: a first sub-module, called OrowanBacon,
uses the Bacon analytical model [1] to provide the increase of crit-
ical resolved shear stress. A second sub-module, DUPAIR, uses a
simplified dislocation code combined with a Foreman and Makin
model [4] to simulate the unpinning of dislocations around obsta-

Fig. 4. Screenshot of the perspycace GUI for the definition of a list of chained modules (page Chain of the notebook).

S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174 171
cles, and also to provide the increase of CRSS. Both sub-modules
are exclusive and cannot be chained.

Another specificity of the modules is that they can be simple
‘containers’ for other modules, or what is called ‘end-modules’,
that is module that really perform a physical computation. In the
above example, HARD is a container for the two end-modules Oro-

wanBacon and DUPAIR. To describe a more complex structure of
end-product, the Fig. 3 details the different modules and sub-mod-
ules of the ToughnessModule.

2.4.4. Other important packages
The doc/ folder contains all the documentation, in PDF or HTML

formats, for both the end-products described in PMM/, but also for
all classes defined in PDM/. The documentation of the use of the
graphical user interface perspycace is also included, as well as some
documents concerning the different codes used in the platform.
The generation of the documentations of modules and classes uses
specific python drivers that extracts their LATEX documentation
strings (as well as for their sub-modules or attributes) and recur-
sively builds a complete LATEX document that is compiled and con-
verted into PDF and HTML using dvips, ps2pdf and latex2html.
As an example, the diagram of the Fig. 3 was generated with this
process.

There is also a developer documentation that is located in the
apidoc/ folder. This documentation is generated thanks to the
epydoc utility8 from the docstrings of the functions, classes and
methods.

The Perspycace python package contains the definition of the
GUI components. Perspycace stands for Perfect Study interface
8 <http://epydoc.sourceforge.net/>.
based on Python for Cascade Computation of end-products, but is also
an acronym of clear-sighted in French. The GUI is based on python-

qt, and was designed with the help of the qt-designer9 software.
The key point is that this GUI is implemented separately from the
‘engine’ that allows to define and launch PERFECT studies, described
in Section 2.4.2. This non adhesion allows also to define easily other
graphical user interface if wanted.

All compiled binaries of the codes used in the platform are lo-
cated in the tools/ directory. For the moment, only validated ver-
sions of these codes are placed here. The binaries are available for
32-bits platforms.

3. Description of a PERFECT study

This section will briefly describe the functionalities of the plat-
form from a user’s point of view, and how it can be employed to
define, launch, follow and process a study. As mentioned previ-
ously, this can be done either in ‘batch mode’ (via a python script)
or via the perspycace interface. We will focus on the use of the
latest.

3.1. Defining the study

A PERFECT study is correctly defined by the following elements:

� a set of information regarding the user (name), the date, the
description of the study;

� a chain of modules selected from a given end-product;
9 http://trolltech.com/products/qt/features/tools/designer.

http://epydoc.sourceforge.net/
http://trolltech.com/products/qt/features/tools/designer

Fig. 5. Screenshot of the Data page of the notebook. The input data needed for the selected modules can be modified by the user. One can recognise the structure of the
SingleCrystalCailletaud class given in Section 2.4.1.

Fig. 6. Follow-up of the execution of a PERFECT study. For each module a progress bar displays the current state of advance of the computation. A text frame also displays the
output of execution of the current running module.

172 S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174

Fig. 7. Example of curves plotting within perspycace. The gnuplot software is used to generate plots of the output tables produced in the study. Experimental curves can be
plotted as well.

10 refer to <http://en.wikipedia.org/wiki/Comma-separated_values>.

S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174 173
� a collection of input data, depending on the selected modules,
and the accessibility level of the user.

An example of selection of a chain of modules is given on Fig. 4.
The chosen modules are part of the ToughnessModule. The full ‘tree-
view’ of the end-products is available on the left frame. Clicking on
a given module gives access to a short documentation about the
module, its author, its version, and so on. Moreover, the full mod-
ule documentation in PDF or HTML format can be obtained with
the respective buttons on the right frame.

The selected modules are listed in the bottom frame. An auto-
matic recognition of the compatibility of the modules is done, so
that only chain-able modules can be selected. Any selected module
can be removed from the chain by simply double-clicking on it.
Once a chain of modules is correctly define, it can be saved in a file
for further use in another study.

The dictionary of input data is presented on the Data page of the
notebook of perspycace (see screenshot of Fig. 5). The whole struc-
ture of each data is presented on the treeview and updated thanks
to the current list of selected modules. Only data corresponding to
the access level of the user, defined on the right panel with the User
profile choice, are visible and modifiable.

The current value of the data as well as its unit when available
are also listed in the treeview. Editing any data allows the user to
modify its default value. It is worthwile to notice that mathemati-
cal expressions can be used to define a value as well. Once the va-
lue is correctly defined and is consistent with the validity range
attribute of the object, the status of the object becomes valid
(green bullet instead of red bullet in the Value column).
Numerical tables can also be parsed from text files, as some im-
port facilities are available. On the other side, those tables can also
be exported into ASCII files with a space-type field separation or in
the csv10 format. This is convenient to define tables from experimen-
tal results in particular.

Documentation in PDF and HTML formats for each input data
can be browsed by clicking on the appropriate button on the right
panel. Selecting an object also displays a small help in the Short
documentation frame.

The object can also be exported to some specific files in order to
be used furtherly in other studies (export button). They can be im-
ported using the import button as well. The format used to store
these objects is based on the XML syntax.

Once all values are correctly defined, the Data page of the note-
book displays a green bullet instead of a red one, and the user is
able to launch the study. At this stage, the study can also be ex-
ported as a python script via an option in the Study menu. The file
generated can thus be modified and launched by the experimented
user who, of course, should also have a basic knowledge of the
python language.

3.2. Launch and follow-up of the study

The launch and follow-up of the execution of the study is avail-
able through the Run page of the notebook of perspycace. The exe-
cution of the study is fully controlled by the user through the

http://en.wikipedia.org/wiki/Comma-separated_values

174 S. Bugat et al. / Journal of Nuclear Materials 406 (2010) 166–174
menubar of the application: a study can be launched, interrupted,
resumed and stopped when desired.

Once the study is launched (see screenshot of Fig. 6), the chain
of selected modules and the input data are no more modifiable. The
only way to set a new value for a given input data is to stop and
reinitialise the study. This parapet avoids any confusion on the ini-
tial parameters of the study. After launching, the execution of the
current running module is available thanks to a progress bar and
a text frame displaying its output messages.

In case of failure of execution of a given module, some trouble-
shooting tools are available: the so-called ‘execution stack’ can be
displayed by clicking on the lamp button. It gives access, for each
module, to the return code of execution, the standard output mes-
sages of execution, and the error output messages.

3.3. Post-processing of the results

Once the study is finished, all output data provided by the mod-
ules that correctly operated are available in the Data page of the
notebook. They can be displayed to the user’s view, or exported
to text files if they represent numerical tables. These tables can
also be plotted within perspycace, through the Graphics page of
the notebook. Plots use the gnuplot11 free software to generate
PNG preview graphs. Although only 2D curves can be plotted, they
can also be imported from text files, so that comparisons with exper-
imental results are also allowed, as shown in Fig. 7.

At this stage, studies can be stored with their output results for
comparison with other studies. A LATEX report can also be gener-
ated. It contains not only the input and output data, but also if
wanted the execution stack and the documentation of the selected
modules. This report can be processed with latex to get a PDF re-
port of the study, ready to be printed.
4. Conclusions and outlooks

The PERFECT platform was developed during the 6th Frame-
work Program project PERFECT. It aims at integrating different
end-products, dedicated to the prediction of irradiation effects on
RPV and Internals steels, into a common software environment.
Each end-product can be seen as a sequence of modules, chain-able
or exclusives, aiming to solve a specific physical phenomenon at
one scale. The modules involve different codes developed in the
relative scientific community.

The choices made to build the software environment allowed to
have a consistent and upgradable platform. python was selected as
the preferred language for the development. More generally, Open
Source software and standards were used to enhance the portabil-
ity of the platform and to ease its enrichment, especially for scien-
tists not necessarily familiar with software development.

The choice of an orthogonal conception also allows to use the
platform either in batch mode, or through a graphical user inter-
face. The architecture of the platform is consistent with this choice.
The different packages can be developed apart from one another.
The documentation of the end-products and the input/ output data
is also automatically generated, as each object embeds its own
documentation.
11 <http://www.gnuplot.org>.
A study corresponds to the definition of a sequence of chainable
modules, and a list of input data necessary for the modules to oper-
ate. Once all data are correctly filled by the user, the study can be
launched and fully controlled thanks to the graphical user inter-
face. If a failure occurs during the execution, some debugging facil-
ities are available to identify the possible causes. The executed
study can be stored with its output results. Output results can be
also plotted and compared with experimental results or results
coming from other PERFECT studies.

The PERFECT platform is distributed to the members of the PER-
FECT project thanks to a Live-DVD, containing a Debian12 GNU/Li-
nux distribution with all prerequisites, and the platform itself. This
distribution mode allows any user having a computer with enough
RAM to test the platform without installing anything on its hard
disk. However, for better performance of the platform it should be
installed on a compatible Linux distribution. As all the prerequisites
required by the platform are available on every distributions, this
does not represent a strong difficulty.

Further development of the platform will be focused essentially
on the post- processing facilities. The latest version of the platform
already contains an optimiser based on the Nelder-Mead simplex
algorithm13 which allows to identify specific input data on some gi-
ven results, in batch mode. A specific graphical interface was also
developed for this purpose.

Moreover, a strong interest for the use of the platform with re-
gard to parametric studies, sensitivity analyses and confidence
analyses has been identified. The development of such extensions
to the platform will be treated in the follow-up project of PERFECT,
but needs strong skills in probabilistic approaches.

Finally, the PERFECT platform could also benefit from the post-
processing facilities already available in the SALOME platform, in
particular for the visualisation of the results of mechanical compu-
tations (stress and strain fields), or for curve plotting instead of
gnuplot.
References

[1] D.J. Bacon, U.F. Kocks, R.O. Scattergood, Philos. Mag. 28 (6) (1973) 1241.
[2] F. Beremin, Metall. Trans. A (Phys. Metall. Mater. Sci.) 14A (11) (1983) 2277.
[3] P. Flewitt, Mater. Sci. Eng. A (Struct. Mater.: Prop. Microstruct. Process.) A365

(1–2) (2004) 257. <http://dx.doi.org/10.1016/j.msea.2003.09.084>.
[4] A. Foreman, M. Makin, Philos. Mag. 13 (1966) 911.
[5] N.M. Ghoniem, E.P. Busso, N. Kioussis, H. Huang, Philos. Mag. 83 (31–34)

(2003) 3475. <http://dx.doi.org/10.1080/14786430310001607388>.
[6] L. Greenwood, R. Smither, SPECTER: Neutron Damage Calculations for

Materials Irradiations, Argonne National Laboratory, Argonne, IL, ANL/FPP/
TM-197, January 1985.

[7] S. Jumel, C. Domain, J. Ruste, J.-C. Van Duysen, C. Becquart, A. Legris, P. Pareige,
A. Barbu, E. Van Walle, R. Chaouadi, M. Hou, G.R. Odette, R.E. Stoller, B.D. Wirth,
J. Test. Eval. 30 (1) (2002) 37.

[8] S. Jumel, J.C. Van-Duysen, J. Nucl. Mater. 340 (2–3) (2005) 125. <http://
dx.doi.org/10.1016/j.jnucmat.2004.10.131>.

[9] G. Lindstrom, IT Prof. 7 (5) (2005) 10.
[10] L. Malerba, E. van Walle, C. Domain, S. Jumel, J.-C. Van Duysen, State of

Advancement of the International Reve Project: Computational Modelling of
Irradiation-induced Hardening in Reactor Pressure Vessel Steels and Relevant
Experimental Validation Programme, Arlington, VA, USA, 2002, p. 8.

[11] D. Nouailhas, J.-P. Culie, G. Cailletaud, L. Meric, Eur. J. Mech., A/Solids 14 (1)
(1995) 137.

[12] A. Ribes, C. Caremoli, Salome Platform Component Model for Numerical
Simulation, vol. 2, Beijing, China, 2007, p. 553. <http://dx.doi.org/10.1109/
COMPSAC.2007.185>.
12 <http://www.debian.org>.
13 see http://pylab.sourceforge.net/packages/optimize.py.

http://dx.doi.org/10.1016/j.msea.2003.09.084
http://dx.doi.org/10.1080/14786430310001607388
http://dx.doi.org/10.1016/j.jnucmat.2004.10.131
http://dx.doi.org/10.1016/j.jnucmat.2004.10.131
http://dx.doi.org/10.1109/COMPSAC.2007.185
http://dx.doi.org/10.1109/COMPSAC.2007.185
http://www.gnuplot.org
http://www.debian.org
http://pylab.sourceforge.net/packages/optimize.py

	A not-so-short description of the PERFECT platform
	Introduction
	Description of the platform
	Some historical notes
	A few words about the end-products
	General principles
	Structure of the platform
	The PDM package
	The PSM package
	The PMM package
	Other important packages

	Description of a PERFECT study
	Defining the study
	Launch and follow-up of the study
	Post-processing of the results

	Conclusions and outlooks
	References

